无人驾驶汽车涉及的技术包括环境感知+定位导航+路径规划+决策控制;可以分为感知和决策两个层面,一方面通过传感器数据获取车辆自身及四周环境的数据,另一方面结合高精度地图和天气数据做到构建全局数据。数据综合起来将与决策层做协调应用,辅助系统做定位和导航,再结合算法模型做路径规划,控制车辆的转向和速度,实现驾驶自动化。

微信截图_20180416161843.jpg

车辆的感知功能主要是通过传感器来获取数据。传感器相当于无人驾驶汽车的眼睛,用来观察行驶时的动态变化,它是无人驾驶汽车中不可或缺的重要组成部分,常用的传感器包括有摄像头、激光雷达、超声波雷达、GPS、陀螺仪等,摄像头和激光雷达是最主要的两种传感器。

目前,通过摄像头进行拍摄,在进行图像和视频识别,确定车辆前方环境,是无人驾驶汽车的主要感知途径,这也是很多无人驾驶公司的主要研发内容之一。摄像头作为一种已普遍应用的传感器,具有成本低廉、信息采集量大等特点。

摄像头与毫米波雷达技术.jpg

激光雷达的工作原理是通过发射单元将电脉冲变成光脉冲发射出去,接收单元再把从目标反射回来的光放冲还原成电脉冲,通过计算发送信号到接收信号的时间差,可以准确测量视场中物体轮廓边沿与设备间的相对距离,这些轮廓信息组成所谓的点云并绘制出3D环境地图,精度可达到厘米级别。激光雷达的穿透距离远,高性能激光雷达可以实现200米范围内,精度高达厘米级的3D场景扫描重现,从而帮助无人驾驶系统实现提前行驶路线规划。目前来看,多线激光雷达很有可能是未来无人车的必备传感器,并且与高精度地图及驾驶系统核心算法紧密相关。但是,多线激光雷达还没有针对车规级的成熟量产方案,机械旋转式多线激光雷达虽然已在普遍应用,但体积较大且价格过于昂贵。

除了激光雷达之外,近年来毫米波雷达和超声波雷达也逐渐成为无人驾驶汽车中,参与多传感器信息融合感知设备。其中,最为知名的例子就是特斯拉在其智能汽车中,完全没有使用激光雷达,而采用毫米波雷达+摄像头的方案。另外,类似博世、大陆这样的智能辅助驾驶巨头,也在毫米波雷达和超声波雷达这样成本较低传感器设备上,拥有丰富的技术积累和应用经验。


激光雷达工作示意图.jpg

微信截图_20180416164324.jpg

无人驾驶通过定位技术准确感知自身在全局环境中的相对位置,将自身视作一个质点并与环境有机结合起来。导航技术则帮助无人驾驶汽车“知道”自己所要行驶的速度、方向、路径等信息。在实际应用中通过信息融合技术将二者组合,从而将环境信息和车身信息融合成一个系统性的整体。

其中高精度地图是无人驾驶实现导航以及后续做路径规划的基础,这些年,卫星导航和基于激光雷达的3D环境建模技术日益成熟,高精度地图测绘质量逐步提升,这为自动驾驶的研发提供了不小的助力。国内高精度地图,以百度地图、高德地图、四维图新等公司为主力;而国外方面,Here、TomTom等公司一直备受好评。

路径规划技术可以为无人驾驶提供最优的行车路径。在无人驾驶车行驶的过程中,从出行需求出发,在高精度地图的基础之上根据路网和宏观交通信息绘制一条自出发点至目标点、无碰撞、可通过的路径(包括计算道路长度、速度、路段等级、交通口等待时长等),再根据车辆在行驶过程中收集到的局部环境数据、自身状态数据来做最优路径选择。

无人驾驶技术在研究过程中首要解决的是安全问题,但激光雷达只能够提供稀疏的环境信息,而无人驾驶行驶在路上所面对的是一个动态变化,所以提高对动态障碍物检测跟踪的准确率、降低误检率是无人驾驶汽车在环境感知中迫切需要解决的问题。

为了在行驶过程中避免与动态障碍物发生碰撞,无人驾驶系统需要算法的辅助来做到以下3个条件:首先要可靠地检测出对行驶有影响的动态障碍物,需要传感器精确测量出障碍物的位置变化并能够提取出障碍物特征用于不同时刻的障碍物之间的匹配,完成对同一个障碍物的跟踪;其次,必须预测出动态障碍物的运动路径;最后需要识别动态障碍物的种类,不同的障碍物具有不同的运动特性,直接影响着无人驾驶汽车最终采取的避障策略。

深度学习在无人驾驶的感知层面主要对摄像头和雷达收集到的局部数据(结合全局数据)做处理,基于动态图像极大的丰富信息以及难以手工建模的特性,深度学习能最大限度发挥其优势。

除却感知和决策层面,无人驾驶还涉及到车辆的控制、汽车动力学、汽车工程等诸多技术学科,同时还需要汽车控制(刹车、转向、灯光、油门等)配件的支持。